Climate Change: Implications for Nebraska Electric Utilities

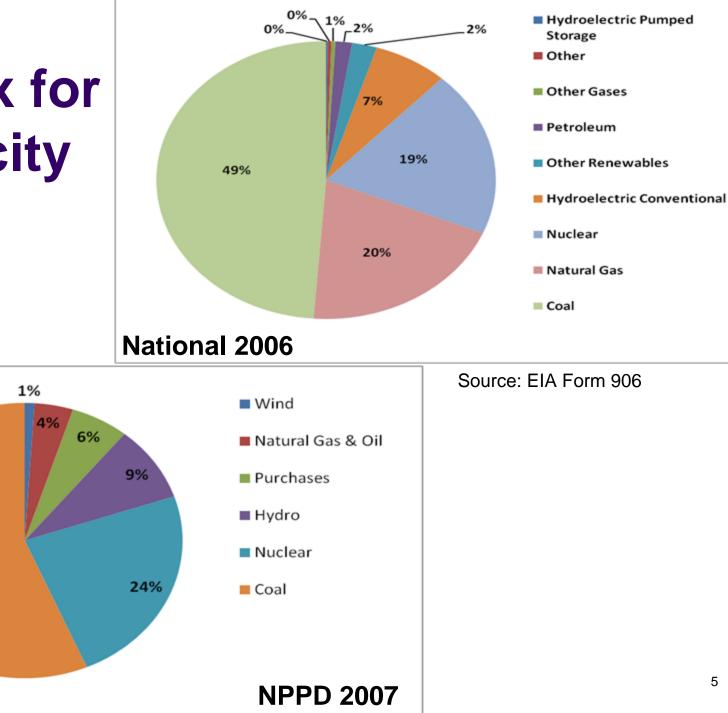
Nat'l Climate Change Legislation & Opportunities for NE UNL's Nebraska Center for Energy Sciences Research November 6, 2008

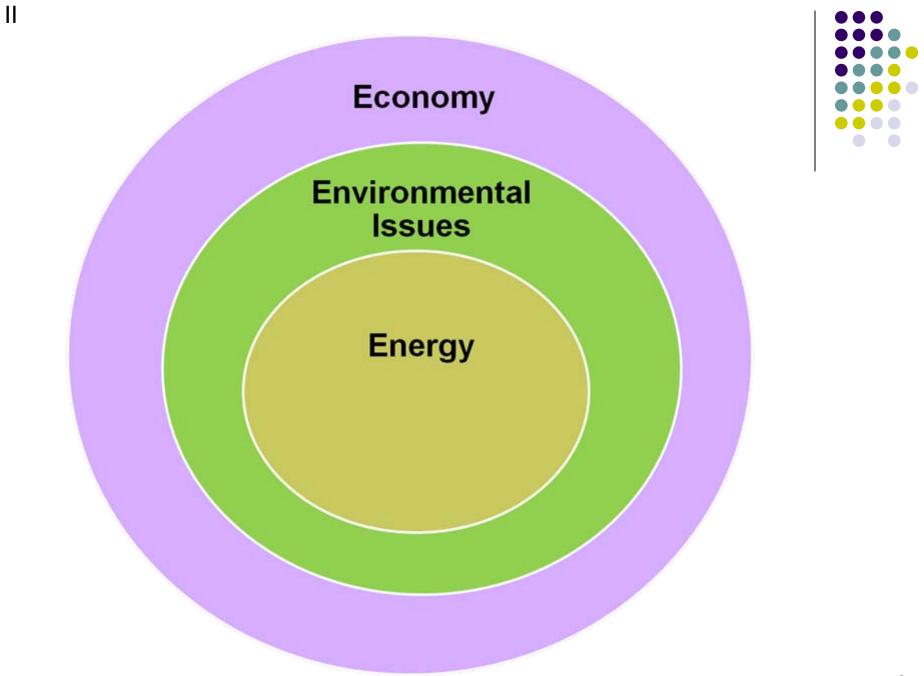
John C. McClure Vice-President & General Counsel

Overview

- I. Electric Utility Industry in Nebraska
- II. Challenges to Reduce Greenhouse Gases
- III. Opportunities to Reduce Greenhouse Gases

Nebraska's Electric Industry


- Nebraska's electric industry is unique
 - Only state with no investor-owned utilities providing retail electric service
- Industry accountable to customers, not shareholders
- Focus has been reliability and low cost as required by state law
 - Nebraska is consistently among the lowest cost states for average retail price of electricity

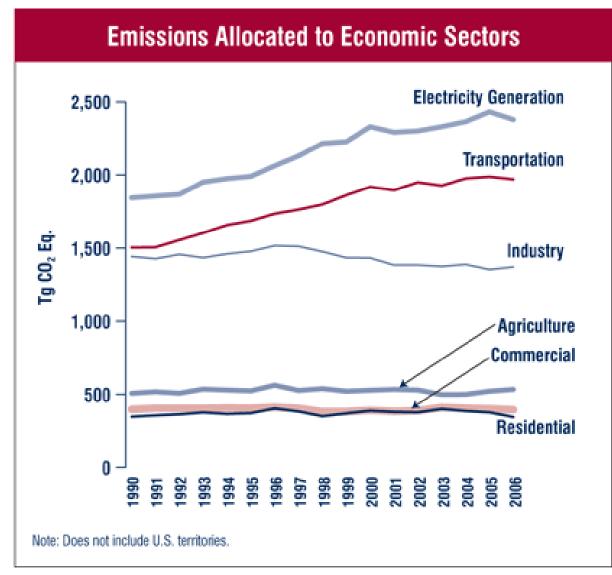

Nebraska Public Power District

- Primarily a wholesale power supplier
 - Serve total requirements of:
 - 52 wholesale municipalities
 - 24 public power districts and cooperatives
 - 80 retail municipalities
- Provide nearly ½ the electricity consumed in Nebraska
 - 3,132 MW of accredited generation capacity
- Own and operate ~ 5,000 miles of electric transmission lines

Fuel Mix for Electricity

57%

Dingell / Boucher Discussion Draft Principles



- Emission levels and timetables should be realistic and scientifically driven
- Energy efficiency and development of clean energy technologies are vital GHG reduction strategies that also have economic benefits
- Limiting costs will protect U.S. jobs
- Economy-wide approach

- Proper allocation of allowances is critical and unresolved
- Implementation matters (must be workable and efficient)

U.S. Greenhouse Gas Emissions

Ш

Reference: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2006, USEPA #430-R-08-005

Electric Industry Resource Challenges

- Generation Must Constantly Match Demand
 - Limited storage capability
- Long-Term Planning Horizon
 - 20-40 years

- Capital Intensive
- Market & Fuel Price Volatility
- Environmental Uncertainty
 - What will be the amount and rate of carbon reduction?

- Technology Uncertainty
 - Generation choice
 - Smart Grid development
 - Electrification of transportation sector
- Economic Uncertainty
 - Global
 - National
 - Regional
 - State

Climate Change Issues

- Long-Term Challenge slow, stop, reduce emissions
- Lack of commercial scale technology for Carbon Capture and Sequestration (CCS)
 - Current technology estimated to be ~ 30% energy penalty
 - May require new national pipeline network for transportation to suitable storage areas
 - Expect major challenges to licensing sequestration tied to environmental and general liability concerns

Climate Change Issues (Cont'd)

Ш

• Where will future electricity come from, how much will it cost, and will it be reliable?

- Coal proposed new plants being rejected or withdrawn nationally
- Nuclear considerable uncertainty over cost and regulatory process
- Natural Gas increased use will raise the cost and stress supplies and delivery infrastructure
 - Emits CO₂ at approximately ¹/₂ the rate of coal
- Energy Efficiency & Renewables important, but can't totally offset growing needs for electricity and replace retiring baseload capacity

Opportunities to Reduce GHGs

(producing electricity)

Supply side vs. Demand side options

(energy efficiency, conservation and demand-side management)

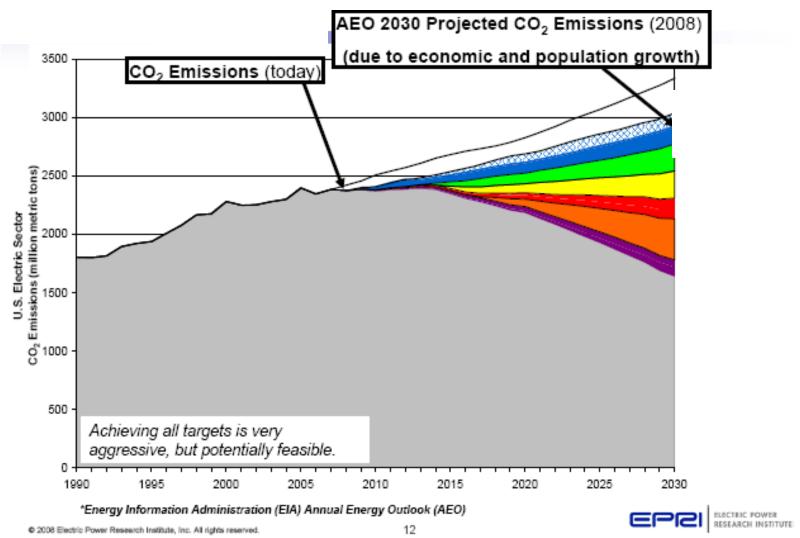
- 2008 NPPD Integrated Resource Plan
 - Increase energy efficiency, conservation and demand-side management
 - Add more renewable resources (primarily wind)
 - Complete studies on transmission expansions to support additional wind
 - Pursue co-generation with ethanol
 - Small power uprate at nuclear plant
 - Study pumped hydro storage
 - Evaluate carbon capture technologies
 - Implement cost-effective methane projects
 - Engage in energy-related research UNL Center for Energy Sciences Research and Electric Power Research Institute (EPRI)

12

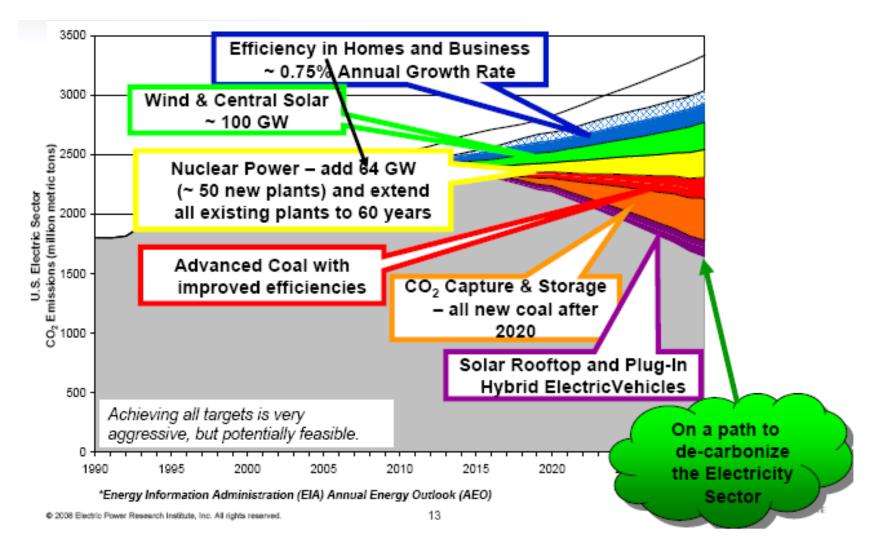
Demand Response Program

Ш

 NPPD has a very successful Demand Response Program. Effective reductions in 2006 and 2007 were:


	2006	2007
Irrigation	560 MW	515 MW
Energy Curtailment Program	73 MW	45 MW
Other	33 MW	12 MW
TOTAL	666 MW	572 MW

Energy Efficiency Initiatives

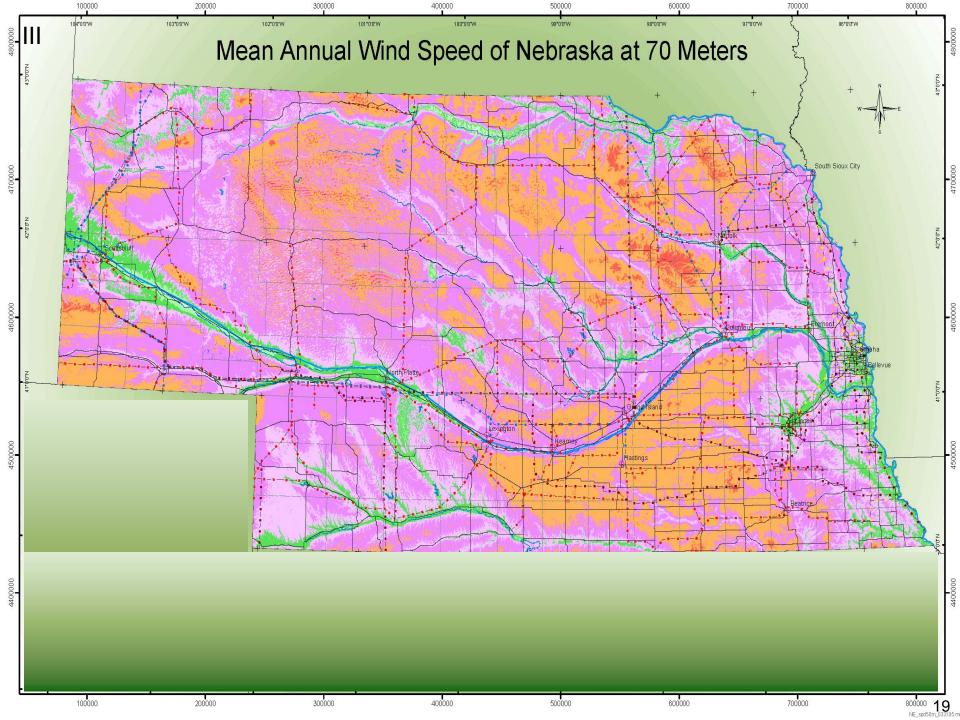

- High Efficiency Heat Pump Rebate Program
- Compact Fluorescent Lighting Promotion
- Refrigerator Recycling Program

- Low Interest Energy Efficiency Loan Program through the Nebraska Energy Office
- Irrigation Equipment Efficiency Testing & Incentives
- Commercial / Industrial Lighting Incentives

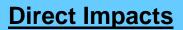
2008 Prism...Technical Potential for CO₂ Reductions

2008 Prism...Technical Potential for CO₂ Reductions (Cont'd)

Opportunity for Wind


- Improving technology to produce electricity with wind
 - Economies of scale
 - Larger machines are more cost-effective
- Wind is a free fuel

- Wind requires no water use
- Wind has no air or water emissions to be controlled
 BUT
- Intermittent source of electricity
- Wind facilities are subject to harsh environment
- Good wind sites may be far from transmission grid


Why Nebraska is Behind Surrounding States in Wind Development

- Some surrounding states have a Renewable Portfolio Standard (RPS) requiring a certain percentage of electricity comes from renewable sources
- IOU's and other private developers can receive lucrative production tax credits which significantly reduce the capital cost of projects
- Nebraska existing generation surplus has been less expensive than adding wind – contrast Texas
- Limited transmission in best wind areas

DOE 20% Renewable by 2030 Nebraska – Economic Impacts 7,880 MW new development

Wind energy's economic "ripple effect"

Payments to Landowners:

\$20 Million/yr

Ш

Local Property Tax Revenue:

• \$30 Million/yr

Construction Phase:

- 12,900 new jobs
- \$1.5 B to local economies

Operational Phase:

- 2,000 new long-term jobs
- \$165 M/yr to local economies

Indirect & Induced Impacts

Construction Phase:

- 13,100 new jobs
- \$1.2 B to local economies

Operational Phase:

- 1,500 local jobs
- \$145 M/yr to local economies

<u>Totals</u>

(construction + 20yrs)

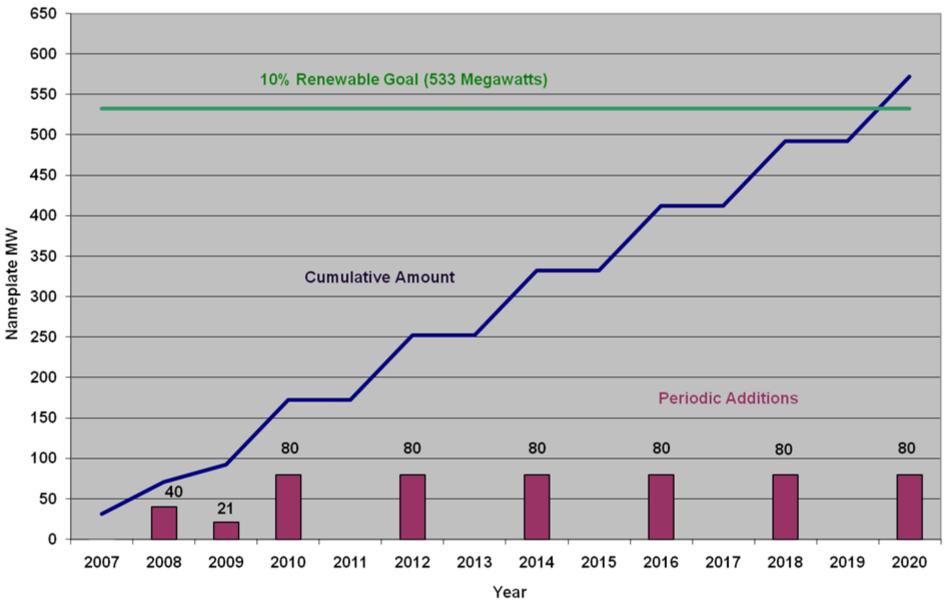
Total economic benefit = \$8.9 B

New local jobs during construction = 26,000 New local long-term jobs = 3,600

All jobs rounded to the nearest hundred jobs; Millions of dollars greater than 10 million are rounded to the nearest five million

Construction Phase = 1-2 years Operational Phase = 20+ years

NPPD Wind Development


Year	Location	Total Capacity	Turbine	NPPD
1999	Springview (Decommissioned)	1.5 MW	Zond 750	Owned
2005	Ainsworth	59.4 MW	Vestas V82	Owned
2008	Bloomfield (Elkhorn Ridge)	80 MW	Vestas V90	PPA
2009	Bloomfield (Crofton Hills)	42 MW	Vestas V90	PPA

Elkhorn Ridge Wind Farm

NEBRASKA PUBLIC POWER DISTRICT Wind Generation Addition Plan to Meet 10% Renewable Goal by 2020

Cost of Power Without Carbon Capture

Ш

(\$/MWh)	Pulverized Coal	Natural Gas Combined Cycle	IGCC Eastern	IGCC PRB	Nuclear	Wind	Solar	Biomass
Plant Capital Cost	35	13	42	44	69	62	113	36
Plant Fuel Cost	15	50	14	9	7			27
Plant Operations and Maintenance	8	6	12	12	13	9	39	28
Cost of Power without Carbon Capture	58	68	68	65	89	71	151	91

IGCC – Integrated gasification combined cycle. MWh – Megawatt-hour. PRB – Powder River Basin

Source: Reproduced with permission of Standard & Poor's, a division of The McGraw-Hill Companies, Inc., U.S. Utilities and Power Commentary, Nov. 2007 article "Which Power Generation Technologies Will Take The Lead In Response To Carbon Controls?" Author: Swami Venkataraman, Dimitri Nikas and Terry A. Pratt; Published May 11, 2007

Cost of Carbon Capture and Sequestration (CCS)

Ш

(\$/MWh)	Pulverized Coal	Natural Gas Combined Cycle	IGCC Eastern	IGCC PRB	Nuclear	Wind	Solar	Biomass
Carbon Dioxide Capture Capital and O&M	13	9	7	7				
Carbon Dioxide Energy Penalty	30	12	15	15				
Carbon Dioxide Transport and Storage	19	7	12	14				
Cost of CCS per MWh	62	28	34	36				
Cost of Power with CCS	120	96	102	101	89	71	151	91

IGCC - Integrated gasification combined cycle. MWh - Megawatt-hour. PRB - Powder River Basin

Source: Reproduced with permission of Standard & Poor's, a division of The McGraw-Hill Companies, Inc., U.S. Utilities and Power Commentary, Nov. 2007 article "Which Power Generation Technologies Will Take The Lead In Response To Carbon Controls?" Author: Swami Venkataraman, Dimitri Nikas and Terry A. Pratt; Published May 11, 2007

Conclusions

- In a carbon constrained world, we need significant technology advances
- Increased renewable energy and increased energy efficiency are an important part of the solution
- Increased renewable energy will require substantial transmission additions
- Reliable, affordable, baseload generation must be available
- There is no silver bullet!